본문 바로가기
토목,건축

내진 설계란 무엇인가?

by ZOZOON 2020. 9. 7.

내진 설계란?

 

내진(耐震)은 건축에서 지진에 견디는 특성을 의미하며, 내진설계는 지진에 건물이 무너지는 것을 막기 위해 지진에 견딜 수 있도록 건축물을 설계하는 것을 말한다.

다만 많은 사람들이 오해하는 것이 내진설계가 된 상태면 지진 피해가 없거나 규모 6.5 설계면 규모 6.5에서 외장재에 손상이 안 갈 것이라고 생각하나 실제로 내진설계의 기본개념은 지진이 일어났을 때 완전 붕괴를 방지하여 인명 손실을 막는 것으로, 내진설계의 결과물에는 엄청난 기술이 필요한 것이 아니라 띠철근의 간격과 띠철근 폐합의 차이가 있을 뿐이다. 필로티 구조물의 기본원리는 1층에서 부분적인 손상을 유도하여 오히려 상부층의 안전을 도모하는 설계의 개념이다. 면진장치를 사용하는 면진설계와 매우 유사한 개념이다. (내진 성능은 면진설계 > 제진설계 > 내진설계 순서이다.)

실제로 설계지진력이 오면 내진설계가 잘 된 경우 건물은 붕괴 직전의 단계로 유지된다. 또한 내진설계는 규모나 진도로 설계하지 않으며 공학적으로 매우 복잡한 요소를 알아야 하나 일반인들이 이해하기 힘들며, 국내에서 내진설계 전문가(건축구조전문가)는 일부 언론에 의하면 단 1000명도 되지 않는다고 한다.

내진설계의 목적은 구조물을 무조건 튼튼하게 건설하여 구조물을 보호하자고 하는 것이 아니라, 구조물은 비록 손상을 받더라도 사람의 생명을 구하고자 하는데 있다. 우리들이 내진설계를 한다고 하지만 발생할 지진력의 크기에 대하여 결코 알지 못한다. 단지 우리의 경제력이 허용하는 범위 내에서, 다가올 지진력의 크기를 인간의 관점에서 판단하고 대비하고자 할 뿐이다.

따라서 현재의 설계기준은 다음의 기본개념에 기초를 두고 있다.
1.인명피해를 최소화한다.
2.지진시 교량 부재들의 부분적인 피해는 허용하나 전체적인 붕괴는 방지한다.
3.지진시 가능한 한 교량의 기본 기능은 발휘할 수 있게 한다.
4.교량의 정상수명 기간내에 설계지진력이 발생할 가능성은 희박하다.
5.설계기준은 남한 전역에 적용될 수 있다.
6.이 규정을 따르지 않더라도 창의력을 발휘하여 보다 발전된 설계를 할 경우에는 이를 인정한다.

이러한 기본 개념을 구현하기 위해서는 낙교방지가 확보되어야 하며, 낙교방지는 가능하면 교각의 연성거동에 의한 연성파괴메커니즘을 유도하여 확보하고, 그렇지 않은 경우 낙교방지 대책 (전단키, 변위구속장치 등)을 제시하여 확보하여야 한다. 또한, 필요한 경우 지진격리시스템을 설치할 수 있다.

현대에 들어서는 지어지는 모든 건축물에 적용되다시피 하는 설계 방법이다. 국내에서는 지진이 상대적으로 적고 비용도 절감하기 위해 법 제정 연도인 1988년까지 필수적으로 도입하지 않았으나 1978년 10월 홍성 지진으로 인해 10년동안 관련 논의가 계속되어 오다가 관련 법 제정 이후 거의 필수가 되었다. 다만 아직도 3층 미만의 건물에는 제대로 적용되지 않고 있어 이에 대한 비판도 제기된다.

단, 3층 미만의 건축물의 경우 건축물의 자체 하중이 너무 낮아 설계 단계에서 지진 하중에 의한 영향이 거의 없는 수준으로 떨어진다. 이런 건축물에선 보통 고정하중과 적재하중, 적설하중에 의해 설계가 결정난다. 하지만 국내 지진형태는 고주파가 많아 오히려 저층 피해가 고층빌딩 보다 직접적인 영향을 받아 피해가 클 수 있다. 

특히, 저층 건축물은 지진에 대한 추가적인 대비책이 없기 때문에 고층 건물에 비해 취약하다.  고층 건축물의 경우 저층 건축물과 같이 기본적인 구조체만으론 지진하중과 풍하중에 대한 저항 성능을 효율적으로 확보하기가 어렵기 때문에 TMD와 같은 횡변위 제어를 적용한다. 이런 추가적인 대처방안과 내진 설계시 건축물 중요도의 차이, 그리고 건축물의 높이로 인한 진동주기가 길어지는 등 여러가지 이유로 인해 저층 건물에 비해 고층 건물이 지진에 대비가 더 잘 되어 있을수 있다.

또한 규모와 진도, 지반가속도는 1:1 대응관계가 아니기에 규모 몇까지 버틴다, 지반가속도 몇에 무조건 무너지고 버틴다는 잘못된 정보이며, 일반건물의 내진설계에서 2등급은 EPA (유효지반가속도) 0.11G (PGA 기준 통계상 0.27G, 통계상 진도 8 , 통계상 규모 6)에서 붕괴방지 (여진에서는 완전붕괴가 충분히 가능하며 대피시간만 확보) 1등급 기준 EPA 0.154G (통계상 PGA 0.3G , 통계상 진도 8과 9 사이 , 통계상 규모 6.3)에서 붕괴방지, 특등급 기준으로는 EPA 0.22G(통계상 PGA 0.54G , 통계상 진도 9, 일반적으로 통계상 규모 6.5~6.7)에서 붕괴를 방지한다.
(최근 내진설계 기준이 강화되어, 특등급의 경우 4800년도 재현주기가 적용되 EPA0.3G (통계상 PGA 0.67g, 진도 IX, JMA진도 6강, 통계상 규모 6.9~7.4에서 붕괴방지 / 일본의 일반건축물 기준(대략 0.2g) 보다 더 높음) )

건축물을 튼튼하게 짓는 것은 기본 중에 기본이지만, 내진 설계의 경우 견고하게 짓는다보다 안 넘어지게 짓는다가 중요해서 일반적인 설계와는 다르다. 예를 들어 망치는 단단하기 때문에 일정 이상의 충격을 주지 않는 이상 부서져 버리진 않지만, 이 망치를 책상 위에 세워두고 책상을 흔들어도 안 무너지도록 세우는 것은 다르다는 것이다.

이렇듯 지진을 버티기 위한 인간의 대처법 중 가장 효과적인 대처법이 내진설계지만, 이러한 내진설계 또한 단층 위, 진앙 위에 있는 건물의 경우 역시 버티지 못하고 맥없이 무너진다. 하지만 굉장히 적은 사례이지만 반대 사례를 하나 꼽자면 1995년 1월 고베 대지진이 있다.

세계 최고 수준의 내진설계를 자랑하는 일본에서도, 2011년 3월 도호쿠 대지진 당시 멀리 떨어진 오사카에서 JMA 진도 3 (MMI진도 5~6) 정도의 진동에도 불구하고 마천루인 오사카 세계무역센터에 구조 손상이 발생한 적이 있다. 아무리 지진에 대비해 설계 및 시공한다고 해도 구조물에 전해지는 모든 형태의 지진파를 예측하기 어렵기 때문에 최고 수준의 내진설계가 적용되어 있다고 해도 지진에 완전히 안전하다고 장담하기는 어렵다. 또한 건축물의 구조 또는 자재의 특성 및 지질학적 조건에 따라 내진 성능이 달라질 수 있다.

내진 설계는 특별한 구조의 설계라기보다는 지진이 일어났을 시의 자체 하중과 횡압력에 버틸 수 있도록 구조물을 더 튼튼하게 짓는 것이다. 철근 콘크리트 구조의 경우 철근을 더 많이 넣어 하중 강도를 높이거나 기둥 등의 지지 기반을 추가하는 등의 설계방식을 내진 설계라고 부른다. 내진구조 자체는 지진에 견딜 수 있지만 진동이 건물에 그대로 전해지기 때문에 가구가 쓰러지거나 가스관이 파열되는 등의 2차 피해를 막기 위해, 건물의 재사용을 위해 흔들림을 상쇄시키는 건축기술개발이 일본을 중심으로 진행되고 있다. 최근에는 기술이 발전함에 따라 면진이나 제진 같은 지진력을 감쇄시키는 특별한 설계 방식이 늘어나고 관련 특허도 증가하는 편이다.

 

내진설계 구조

 

 

건물 구조를 지진에 버틸 수 있을 만큼 튼튼하게 건설하는 것으로, 지진이 발생했을 때 내구성으로 버틸 수 있게 만든 구조이다. 하지만 단순히 건물의 내구력만을 높인 것이라서 건설비가 타 구조보다 저렴하긴 하나 지진 발생시 건물의 내부가 손상될 위험이 상대적으로 커 현재는 특수한 지진 대비책으로 여기지는 않는다. 후술할 내진단계 중 1단계에 속한다. 원자력 발전소는 배관등 주요 기기들이 3m 이상으로 움직이게 되면 손상이 가며, 격납 용기는 수소폭발을 견뎌야 하기 때문에 매우 두꺼운 벽식 구조 및 내진 구조로 설계한다.

후쿠시마 원전의 벽 두께는 16cm인 반면 국내 원전은 120~150cm이며, 이는 내진설계가 안 됐다 하더라도 웬만한 지진은 버티는 두께이다. 요즘에는 쓰이지 않지만 옛날에 경제성을 무시하고 기둥의 두께와 벽체를 두껍게 하는 내진설계 방법도 있었다.

국내 원전의 내진설계 값은 EPA (유효지반가속도 ) 기준 0.2G ~ 0.3G (일반적으로 PGA와 EPA 관계는 통계적으로 PGA가 EPA의 값의 2.5배 정도 나온다.)
핵심시설의 경우 안전여유도를 매우 크게 잡아서, 0.6~1.0G ( 진도 X~XI, JMA진도 7)에도 버틴다.
일반건축물에 해당 내진설계 값에 해당되는 지진이 실제로 오면 붕괴직전에 이른다. 하지만 원전은 그 이상의 지진이 오더라도 여유도가 높아 버틴다는 게 전문가들의 의견이다.

일반적인 구조물은 붕괴 직전의 상태를 유지한다는 설계개념을 달성하기 위하여 응답수정계수라는 것을 적용하여 실제 지진력에 대하여 1/3 또는 1/5 , 1/7지진력의 크기로 줄인 값(국내는 1/3 값을 많이 사용 , 강진 지역인 일본,미국에서는 1/7~ 1/5 값을 사용)으로 탄성설계를 수행함으로서 구조물이 갖고 있는 다양한 안전율을 완전히 소비하여 부재에는 대변형이 발생한 상태를 상정하고 있다. 반면에 원자력의 경우에는 중요 구조부재에 대하여 조금의 균열이라도 허용하면 방사능 누출과 연관성이 있는 관계로 절대적인 탄성을 유지하도록 설계되고 있다.

따라서 일반적인 구조물이 갖는 단면력에 비하여 원자력 구조물은 10배 이상의 내력을 갖고 있으며 구조형식에 있어서도 돔 형식의 벽식구조와 더불어 사고시 압력에 대비하기 위하여 포스트텐션이라는 강선으로 돔 외부를 칭칭 감고 있다. 원자력 발전소의 지진피해를 걱정할 정도의 강진이 발생한다면 원자력의 인근 지역, 어쩌면 한반도 전역이 괴멸 상태에 빠져 원자력 발전소의 안전을 염려할 여력이 없을 것이다.

반론으로 2011년 3월11일 동일본 대지진에 의한 후쿠시마 원전사고를 예로 들지도 모르겠다. 그러나 최대 가속도가 3.0g~4.0g까지 계측된 후쿠시마 원자력 발전소의 경우에도 지진동에 의해 구조물에 직접적으로 균열이 발생하여 방사능이 유출된 사고가 아니다.

또한 후쿠시마 원전도 지진은 손상없이 버텼지만 쓰나미로 인해 원자로 전력이 상실되어 냉각에 문제가 발생한 문제지만 국내 원전은 원자로 격납용기 내 가압기와 증기발생기가 있어 부피가 크므로 사고 발생 시 대처 시간이 충분하다는 것이다.

가압경수로는 또한 원자로에 물이 가득 차 있으므로 연료봉 온도가 천천히 상승하며, 제어봉이 원자로 위쪽에 설치돼 있어 전력이 끊겼을 경우에도 중력에 의해 동작을 수행할 수 있다.

Ø 안전정지지진과 운전기준지진에 대하여 따로 정의하며, 통상적으로 운전기준지
진의 지반 가속도는 안전정지지진의 1/2값 사용
Ø SSE: 수평방향 0.2g(0.3g), 수직방향 0.13g(0.3g, 일부 구간 수평방향의 2/3) (안전정지)
Ø OBE: 수평방향 0.1g(0.1g), 수직방향 0.067g(0.1g) (안정정지 값의 1/2 , 후쿠시마 원전사고 이후 매우 낮은 확률이지만 혹시 모르기에 임시 정지를 한다.)

또한 국내 원전은 격납용기/핵심시설은 통계상 규모 8~9에서도 버틸 수 있다.

 

제진 구조

 

땅으로부터 건물에 전달되는 진동을 감지하고, 그 진동에 대응하는 힘을 반대 방향으로 작용시키면서 건물의 흔들림을 막는 구조를 말한다. 건물에 따로 설치된 장치로 건물의 흔들림을 제어하는 방식이다. 즉, 지진력을 흡수하여 감소시키는 방법이다. 건물의 옥상 등에 추나 댐퍼등을 설치해서, 지진이 발생 시 이 추를 컴퓨터로 제어하여 건물의 진동 방향과 반대로 진동시켜 흔들림과 횡압력을 일정량 상쇄시킨다. 대표적으로 타이완에 있는 타이베이 101빌딩이 제진을 위한 거대한 추(Tuned Mass Damper)가 건물 상부에 설치되어 있다. 건설비가 내진 설계보다 더 많이 들지만 효율과 안정성이 뛰어나 많이 사용되고 있는 방식 중에 하나다. 100층이 넘는 초고층 건물에 주로 사용되는 설계 방법으로, 현 고층건물들은 거의 모두 이 방식을 사용하고 있다.

제진 구조로 건물을 설계하는 방법에는 두 가지가 있다. 첫 번째는 동조질량감쇠기(TMD)를 이용하는 방법으로, 존 핸콕 센터나 월드 트럼프 타워 등이 이 방식을 사용한다. 이것은 건물이 흔들릴 때 무게추도 같이 흔들리게 하여 그 관성력으로 외력(外力)을 줄이는 것이다. 두 번째는 동조액체감쇠기(TLD)를 이용하는 방법이다. 신 요코하마 프린스 호텔과 하이클리프 아파트가 이 방법을 사용한다. 이 방법은 전술한 동조질량감쇠기와 비슷한 원리이지만, 무게추 대신 액체를 사용한다. 사실 그냥 물탱크다제진 구조는 상대적으로 값이 싸고 건물에 부착만 하면 되는 식이기 때문에, 훨씬 활용범위가 넓다.

내진구조와 비교하였을 때 일반적인 내진구조에서는 골조의 강도를 높이거나 소성화시켜, 즉 연성을 고려함으로서 골조 자체에서 진동에너지를 흡수하는 것으로 건물의 안전성을 확보할 수 있었지만, 이러한 경우에는 구조물을 손상시키지 않고 진동 그 자체를 저감시킬수는 없다. 이에 비해 제진구조는 구조물을 지진하중에 대해 손상시키는 것이 아니라 특별한 장치를 사용해 에너지를 흡수함으로서 앞에서 말한 목적을 달성하는 것으로 최근 주목받고 있는 고급기술이라 할 수 있다.

 

면진 구조

 

1분 10초부터

앞서 말한 두 구조가 지진의 지진력을 버티는 데 중점을 두었다면 면진 구조는 땅에서 전달되는 지진력 자체를 줄여버리는데 중점을 둔 설계이다. 보통의 건물이 지면에 바로 기초공사를 진행하는 것과 달리 특수한 바닥재를 깔고, 그 위에 기초공사를 진행하는 것이다. 건물과 땅 사이에 고무를 겹쳐 만든 고무 스프링과 댐퍼, 베어링 등을 설치하여 지진 발생 시 흔들림이 건물에 전해지는 것을 막는 방식이다. 대표적인 면진 구조로 '납 면진 구조'라는 게 있는데, 이게 수평 지진 뿐 만 아니라 수직 지진까지 버틸 수 있다고 한다. 한마디로 직하 지진도 막아내는 구조다.

세계 최초의 완전한 면진설계가 된 건축물은 고대 페르시아의 키루스 대제의 무덤이다 (기원전 5세기경 건설). 건물 자체와 지면을 분리시키는 base isolation으로 설계되어 건축되었다.

일본에서는 면진 설계에 대한 활발한 연구가 진행되고 있다. 구마모토 대지진 당시 면진설계가 적용된 구마모토 니시구에 있는 11층짜리 맨션(한국의 아파트에 해당)은 건물 피해가 거의 없었다고 하며 7.4의 강진에도 실내 가구 뿐 아니라 테이블 위에 놓여있던 꽃병마저 쓰러지지 않았다고 한다.

흔히 면진 재료로 사용된 고무는 제한된 건물에만 적용이 가능했고, 체육관처럼 가벼운 건물과 건물내의 적재물들이 한쪽으로 쏠리는 현상이 발생할 시 그 효과가 떨어졌는데 신일철주금엔지니어링은 지난 2014년에 흔히 면진 장비의 재료로 사용되는 고무 대신 철을 사용하는 면진장치를 개발했다고 한다.
두꺼운 강판을 구면 가공한 부분과 스테인리스 미끄럼판을 일체화한 장치를 건물과 지반 사이에 삽입해 지진이 일어나면 건물에 삽입된 슬라이더가 진자처럼 흔들려 에너지를 흡수하여 면진 고무보다 더 큰 면진효과를 기대할 수 있다고 한다.

 

차진 구조

 

건물이 땅에 붙어있는 한 지진에서 완전히 안전한 것이 아니기 때문에 아예 건물을 땅에서 떼어버리자는 발상에서 출발한, 궁극의 내진 설계이다. 면진 기술의 진보한 형태이며, 현재는 호버크래프트나 자기장 같은 방식이 연구중이다.

 

내진 보강

 

미국 등 선진국들도 1960년 이전에 설계된 건물들은 대부분 내진설계가 되지 않은 채 건설되었다. 이러한 건물들의 지진 발생 시에 내구성을 강화하기 위하여 seismic retrofit을 실시한다. 즉 내진을 위해 건물을 개조하는 방식이다.

대한민국도 내진설계가 법적으로 의무화 되기 이전인 1988년 이전에 건설된 아파트나 고층 건물 등은 내진설계가 되지 않았을 것을 고려하면 도입이 시급하다.

내진 개조방식도 여러 방법들이 있고 철저한 규정에 따른다. 경제성과 내진성능을 고려하면 포대보강공법을 권장한다. 

내진보강은 성능 기반 지진 공학 (PBEE)의 의하여 4단계의 performance objective를 달성하기 위하여 실시된다.

1단계: 공공 안전. 사람의 생명을 살릴 수 있는 최소한의 내진보강으로, 지진발생시 해당 건물이 곧바로 무너지는 것을 방지하여, 건물 안의 인명들이 신속히 대피할 수 있는 것을 목적으로한다. 대부분의 큰 지진발생 시, 건물은 복구불가 판정을 받을 정도로 훼손되고, 해당 건물은 철거된 후 다시 건축된다. 대부분 아파트 같은 3층 이상 거주용 빌딩 등에 해당.

2단계: 건축물 생존. 1단계보다는 더 섬세한 내진보강으로, 대지진 발생 후 건축물이 수리 후 재사용할 수 있는 것을 목적으로 한다. 대부분의 경우 다리에 사용되는 최소단계의 내진보강.

3단계: 구조 기능. 2단계보다도 더 높은 수준의 내진보강으로 인하여, 대지진 발생 후에도 건축물이 수리가 없이도 곧바로 재사용이 가능할 수 있는 것을 목적으로 한다. 발생하는 수리들은 모두 외관형 목적 (작은 균열 수리 등) 이상으로는 발생하지 않는다. 병원 등의 시설들이 요구하는 최소단계의 내진보강.

4단계: 완전 면진. 매우 역사적 중요성이 높은 문화재들에 적용이 된다.

 

지진 하중

 

 

지진하중이 작용하는 원리는 정지해 있던 물체가 갑자기 움직이게 되면 작용하는 관성의 법칙을 연상하면 쉽게 이해할 수 있다. 갑자기 지진이 발생할 때 관성력에 의해 건물을 미는 힘이 작용하게 되고 이것이 지진하중을 발생시키게 되는 것이다. 지진하중은 무게와 건물에 작용하는 가속도의 곱으로 나타낼 수 있고, 무거운 건물일수록, 건물에 작용하는 가속도가 클수록 큰 지진하중이 작용하게된다. 건물이 진동하면서 지반보다 가속도가 더 증폭될 수 있으며, 건물에 따라서는 지반에 비해 두 배 이상으로 증폭될 수 있다. 건물의 무게는 재료와 치수 등에 따라 계산하여 정하게 된다. 반면에 가속도는 지반의 가속도로부터 지진해석 및 내진설계 분야의 전문이론을 적용하여 결정하게된다. 지진하중에 있어서 가속도의 크기는 일반적으로 중력가속도를 이용하여 나타낸다. 대한민국의 현행 내진설계기준(KB C 2009)에서 가정하는 설계지진의 지반가속도는 0.22g의 2/3수준인 0.15g이다. 그러나 이것은 지반이 암반인 경우이고 암반위에 연약한 흙이 덮여 있다면 흙을 통해서 가속도가 2~3배 증폭될 수 있다. 이는 같은 건물이라도 건물이 있는 지반이 연약하면 더 위험하다는 것을 의미한다. 또한 건물이 진동하면서 가속도가 더욱 증폭되어 결과적으로 건물에 발생하는 진동가속도는 암반에서의 지반가속도에 비해 약 5배 수준가지 증폭될 수도 있다고 보고있다.

 

 

댓글


loading